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A study of the motion of a cavity in a rotating liquid 

By T .  BROOKE BENJAMIN AND B.  J. S .  BARNARD? 
Department of Engineering, University of Cambridge 

(R,eceived 26 August 1963 and in revised form 31 October 1963) 

Experiments are described in which a spinning tube was initially filled with 
water and closed at  both ends; when the water had acquired uniform angular 
velocity the tube was suddenly opened at  one end and hence emptied by centri- 
fugal action, so that a cavity progressed along it towards the far end. The 
velocity of the cavity was found to be steady and proportional to the speed of 
rotation over the range tested, which confirmed the supposition that gravity 
and viscosity had insignificant effects on the cavity motion. Contrary to expecta- 
tion, since the cavity velocity seemed to be too large for it to occur, the ‘Taylor 
phenomenon’ was observed in the liquid ahead of the cavity; that is, the motion 
generated by the invasion of the cavity extended over a continually lengthening 
region beyond it. 

The theoretical discussion in 3 4 explains several features of the experi,ments 
satisfactorily, although the complete analytical problem has so far proved 
insoluble. 

1. Introduction 
The experiments to be described were conceived originally as a possible 

demonstration of principles that had come to light in a theoretical study of the 
vortex breakdown phenomenon (Brooke Benjamin 1962). The experimental 
observations in fact failed to reveal the simple behaviour anticipated, and they 
posed a theoretical problem far more difficult than the one presupposed. Never- 
theless, even though we have been unable to carry out a satisfactory analysis, 
our experimental results may be worth presenting for their own interest. Some 
relevant theoretical points will be summarized in the penultimate section of the 
paper, and it is hoped that these may at least clear the ground for some subsequent 
attempt to provide a complete theory. 

In the experiments a long tube was filled with water and spun steadily about 
its axis until the water acquired ‘solid-body rotation ’. The tube was then opened 
at one end, and since the centripetal acceleration of the water was much larger 
than g the tube emptied axisymmetrically. In  the first stage of the emptying 
process a cavity progressed rapidly along the tube, taking up the volume left by 
water discharged from the open end. Dimensional reasoning suggested that, if 
the tube were long enough and the rotation were rapid enough for gravity and 

t Present address : Hydrodynamics Laboratory, California Institute of Technology, 
Pasadena. 
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viscosity to be unimportant, the velocity U of the cavity would become steady 
at a value proportional to QR, where Q is the angular velocity of the tube and 
R its internal radius; and this expectation was indeed borne out closely by the 
velocity measurements. But since the ratio UjQR (the ‘inverse Rossby number ’) 
was unknown initially, there was no way of foretelling the character of the flow 
as regards the well-known general distinctions depending on Rossby number 
(Squire 1956, $ 1.3). 

To appreciate this aspect of the experiments, it is helpful to review the possi- 
bilities presented a priori by an ideal-fluid model. Let ‘type A ’  designate a 
flow that is steady in a reference frame moving with the cavity and is 
undisturbed far ahead of it, and ‘type B’ a flow in which a continually lengthening 
column of fluid is pushed ahead of the cavity (i.e. in the manner of the pheno- 
menon observed by Taylor (1922) and Long (1953) in their experiments where 
a solid body was moved slowly along the axis of a uniformly rotating liquid). 
Also let co = 0.522QR denote the maximum group velocity of infinitesimal waves 
(see 3 4). Then the possibilities can be listed as follows: 

(1) U > co: flow of type A ;  
(2) U < co, but U/QR not distinctly small: either (a)  flow of type A ,  or 

(3) U < QR: flow of type B. 
Following the history of our investigation, we at first expected a flow of 

type A ,  which would have given us a simple analogy with the vortex breakdown 
phenomenon, and this possibility remained in view when the cavity velocity 
had been measured and found to be in the range (2). We then discovered a 
theoretical argument, which is explained in $4, showing that a flow of type A 
cannot occur past a cavity a t  constant pressure. (Some further analysis bearing 
on this point is contributed by Mr L. E. Fraenkel in an appendix to this paper.) 
Finally, after an adequate flow-visualization technique had been developed, it 
was established that in fact the possibility ( 2 b )  is realized. 

As the rotating tube was horizontal in the experiments, the obvious criterion 
for assuming gravity to have negligible effect on the cavity was that Q2R/g 1.  
For the observations recorded below, this ratio ranged from 41 to 138, these 
values presumably being high enough to justify the assumption. 

( b )  flow of type B; 

2. Experimental apparatus and procedure 
A Perspex tube of length 65 in. and bore 2 in. was mounted in five ball-bearings 

which were fixed to a steel channel clamped to a massive base. The tube was 
driven by an electric motor through a variable-ratio gearbox and a belt and 
pulley system. The tube was sealed a t  one end, and a t  the other a stopper was 
fitted which could be removed while the tube was rotating. The stopper was 
designed for quick removal when the tube was completely filled with water, and 
because of the effective incompressibility of water it was necessary to admit a 
small volume of air before it could be withdrawn. I n  order to minimize disturb- 
ances to the flow the stopper, shown in figure 1, was designed to admit the air 
near the axis of the tube. 
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The body of the stopper carried an 0 ring at its circumference which formed 
a sliding seal a t  the mouth of the tube. Six holes drilled through the stopper near 
the axis were normally covered by a disk attached to a rod passing through the 
centre of the stopper. The disk was held against an 0 ring face seal by a spring. 
By pulling the rod to the right the holes were uncovered and air was admitted as 
the stopper was forced out of the tube by the spring. Tension was applied to the 
rotating rod through the loose wheel a t  its right-hand end. 

- u- I 

IL 
FIGURE 1. Detail of stopper. 

It was necessary to incline the steel channel carrying the tube to fill it  with 
water. The final addition of water was made with the stopper in place but with- 
drawn sufficiently to uncover the pair of holes drilled through the tube wall. 
Water was forced in through the lower hole, and when all the air had escaped by 
the upper hole the stopper was pushed home. The excess water escaped through 
the six holes after its pressure had lifted the disk from its seat. When stoppered 
and secured to the base with its axis horizontal, the tube was driven at  a constant 
speed Q (rad/sec). After a pause of a few minutes to allow the water to acquire 
solid-body rotation through the action of viscosity, the stopper was removed. 
The motion then observed can be described as follows. 

Water escaped through the open end of the tube and was replaced by atmo- 
spheric air, which filled an axisymmetric cavity or core progressing steadily along 
the tube. In  the annulus of water surrounding the cavity the net flow towards the 
open end accommodated the rate of volume displacement by the cavity; but 
a layer of water next to the cavity, being bounded by a surface at constant 
pressure, had to be carried along with it into the tube. The speed of the cavity 
along the tube and the velocity field in the water ahead of the cavity were 
observed for various speeds of rotation. 

CinB-photographs of the motion were taken by transmitted light from a diffuse 
source. The general arrangement is shown in figure 2, where the position of the 
cine camera at  about 6ft. from the tube is indicated by the arrow. A length 

13-2 
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scale and a disk rotating at a known speed to indicate time were photographed 
with the tube. Parallax was reduced by the plane mirror system shown in the 
figure; the tube was photographed in three sections, one directly and two by 
reflexion, which were made to appear one above the other by tilting the mirrors 
slightly from the vertical. Photographs were taken a t  a rate of approximately 
80 framesisec. With the position of the cavity recorded at  a succession of known 
time intervals, its velocity was directly deducible. 

Diffusing screen 150 W 

0 0 0 o h  0 0 0 0 cramp 

FIGURE 2. General arrangement for cin6-photography. 

In order to observe the flow ahead of the cavity, a visualization technique was 
necessary. Three fine platinum wires with an electroplated skin of tellurium were 
positioned along diameters of the tube at  18, 32 and 47 in. from the open end. 
Tellurium evolves a black dye composed of a suspension of fine particles of the 
metal when it is the cathode of an electrolytic cell. The electrochemical reaction 
which takes place at the cathode to produce the dye has been described by 
Wortmann (1953). The tellurium-plated wires were connected to three slip-rings 
and an additional electrode (anode) was connected to earth through one of the 
bearings. Just before the tube was opened dye was released for about 1 sec by 
applying a potential difference of 2OOV between the slip-rings and earth. The 
fluid particles originally situated along the selected diameters of the tube were 
thus marked and their subsequent motion was observed from the cin6-film record. 

[An alternative method of measuring the cavity velocity was tried which may 
be worth mentioning. The time of passage of the cavity between two stations 
along the tube was measured electronically. At each station a pair of slender 
insulated probes with bare tips were aligned along a diameter, leaving a small 
separation between the tips at  the axis of the tube. Slip-rings and the water 
between the tips completed electric circuits, and, when these were broken by the 
cavity, timing signals were obtained. High-frequency alternating currents were 
used to minimize effects of polarization of the probes. The method proved 
unreliable because of breakdown in the thin layer of insulating varnish around 
the probes, and was abandoned in favour of the cin6-photographic method.] 
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Figure 3 (plate 1) shows typical photographs of (a )  the cavity and (6) the 
tellurium dye trace. Certain features of these photographs will be commented 
upon in $4. 

3. Experimental results 
The cinit-films were examined frame by frame and the positions of the cavity 

nose and the marked water situated on the tube axis were noted. This informa- 
tion was used to prepare curves of displacement versus time, a typical set of' 
which is presented in figure 4. In  the figure the slope of the curve joining the 

Time __f 

FIGURE 4. Typical results obtained from cind-photographs, showing displacement vs time : 
0, position of nose of cavity; 0, axial position of tellurium dye trace. 

solid circles gives the cavity speed U ,  which is seen to be substantially constant. 
A straight line has been drawn through the points to emphasize their deviation; 
the systematic nature of the deviation suggests that it may have been due to 
parallax, which changed in sign abruptly when the cavity passed from one to 
the next of the three phases in which it was photographed (see figure 2). The gaps 
in the series of points are due to the passage of the cavity behind the bearings 
and slip-rings. 

The sets of points indicated by open circles in figure 4 show the progress of the 
marked water in three places along the axis. The intensity of the dye traces 
decreased rather quickly with time, owing to diffusion of the dye, and con- 
sequently the points at  the right-hand ends of the curves are less reliable than the 
earlier ones. It appears from the figure that the three curves are similar in form, 
but their scales show a slight though steady increase from the first to the third. 
A line has been drawn joining the three points at  which the instantaneous 
velocity of the marked fluid elements was 0.5U.  The slope of this line gives the 
speed C at  which an axial water velocity of 0.5U propagated along the tube. 
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Estimates of U and C taken from all the diagrams like figure 4 are presented 
in figure 5 .  It appears that the dimensionless parameters UlQR and CIQR were 
essentially constant in the range of the experiments, their values being about 
0.38 and 0.48, respectively. The radius of the cavity was estimated to be 0.5R. 
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FIGURE 5 .  Dependence of U and C on speed of rotation: 

4. Theoretical discussion 
When the experiments finally established the overall character of the flow, the 

theoretical problem was seen to be much more difficult than had been expected. 
Although little has been achieved so far in the analysis of the exact problem, it 
nevertheless seems useful to  review some points of theory that have been 
considered in relation to the experiments. 

A related problem of steady motion 

We first refer to the problem indicated by figure 6. A semi-infinite body of 
revolution is fixed symmetrically in a tube of circular cross-section, the radii of' 
the tube and the cylindrical part of the body behind the nose being R and A ,  
respectively. An inviscid fluid with constant density p flows steadily along the 
tube, and far ahead of the body it has uniform axial velocity U and angular 
velocity Q. In  the annular space far downstream the stream-surfaces become 
cylindrical asymptotically (i.e. it is assumed standing waves do not arise), and 
the aim in view is to find the hydrodynamic drag on the body by consideration 
of a momentum balance between this and the original cylindrical flow. Then if 
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an example were forthcoming in which the pressure on the body surface far 
downstreamwere equal to stagnation pressure on the axis upstream and thedrag 
calculated this particular way were zero (or negative, see below), one might 
suppose the solution to be applicable to the case of a cavity advancing at  velocity 
U into a rotating fluid as in our experiments. 
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uniform axial velocity U and angular velocity a. 
FIGURE 6. Steady swirling flow past axisymmetric body, the fluid upstream having 

When the shape of the body is specified, the flow will be determined com- 
pletely by U / Q R  and AIR, which are the only independent dimensionless para- 
meters of the physical situation; but it appears that steady flows of the type 
depicted in figure 6 are realizable only over a certain range of these parameters. 
The value of UlQA is probably the main criterion, and certainly if it  is very small 
the ‘Taylor phenomenon ’ will occur, producing a continually lengthening 
column of stagnant fluid ahead of the body (cf. Squire 1956, $1.3). When the 
column has extended to distances much greater than R the flow about the body 
will tend to become steady; but then a new, and far more difficult, problem of 
steady motion is presented in that the axial and angular velocities ahead of the 
body are no longer uniform. 

That this phenomenon is encountered in the cavity problem appears surprising 
in view of the experiments by Taylor (1922) and Long (1953)) the results of 
which rather suggest that the value UlQA 0.8 observed here would be too 
large for it to occur. For instance, Long made his experiments with a body 
having a hemispherical nose and conical tail, its radius a being about one-third 
of the radius of the tube along which it was moved at velocity U ;  he found that 
fluid near the axis was pushed ahead of the body only when UlQu was less than 
about 0.2. Taylor gave l /n  as a rough estimate of the corresponding value for 
a sphere of radius u.t In the first stages of the present experimental work these 
antecedents in fact led us to disregard the possibility of the Taylor phenomenon 
occurring, and a search for it was made only after the discovery of a theoretical 
argument, which will now be outlined, indicating that steady flow of the kind 
in question is impossible past a cavity. 

t For a sphere in an unbounded rotating fluid, however, Stewartson (1958) has 
stiggested that the Taylor phenomenon may arise at values of Ulna as high as about $. He 
showed that in its absence the drag on the sphere becomes unreasonably large when 
U/Oa falls below this limit. 
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For a steady axisymmetric flow originating as described above, the stream 
function $ satisfies the linear equation 

in which x and r are axial and radial co-ordinates (cf. Squire 1956, equation (32 ) ) .  
The solution $ = +Ur2 of (1) represents, of course, the original cylindrical flow. 
For the flow in the annular space far downstream, another solution independent 
of x is needed and this can be expressed in the form 

where K = Q / U  and where 8, denotes a linear combination of the first-order 
Bessel functions of the first and second kinds, thus implying two disposable 
numerical constants. Corresponding to ( 2 )  the axial velocity is 

The kinematical boundary conditions on this flow are that $(R) = &UR2 and 
$(A) = 0, which require that 

Z 1 ( 2 ~ R )  = 0 and 8 , ( 2 ~ h )  = - K A .  (4) 

The two numerical constants in ( 2 )  are fixed by (tt), so that with U ,  Q, R and h 
specified the solution is determined completely. [With regard to the cavity 
problem, the idea in view is that amongst the class of such solutions given by 
varying K and h parametrically there might be one satisfying the appropriate 
pressure condition at  r = h and overall momentum condition; as will be explained 
later, the additional boundary condition is that u(h) = 0 and so J 0 ( 2 ~ h )  = - 1, 
which combined with (4) implies that J 2 ( 2 d )  = 0.1 

The drag 23, on the ‘half body’ may be defined as follows (cf. Prandtl & Tietjens 
1957, $78).  Let p denote the pressure in the fluid and p A  its (constant) value a t  
the body surface r = h far downstream. Then D is given by the integral of 
p - p A  over the projected area of the nose. But, by a momentum balance for 
the steady flow, the integral of pressure over the nose must equal the difference 
in ‘ flow-force ’ (i.e. pressure force plus momentum flux) between two sections 
through the flow, the first far upstream and the second far downstream from the 
nose. Therefore the quantity 

where the integrals are evaluated upstream and downstream respectively, must 
be equal to D for the momentum balance to be satisfied. Since dissipation is 
assumed absent the stagnation pressure at r = h far downstream is the same as 
the value on the axis upstream, say Po, and so we have that p A  = Po - In  
the first of the two integrals on the right-hand side of (5) the pressure is expres- 
sible as p = Po- +pU2+ +p(Qr)2 ,  which follows from the facts that in any 
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cylindrical flow dpldr = pw2/r, where ui is the velocity of swirl, and that w = Qr 
upstream; hence the integration can be performed immediately. Furthermore, 
since the circulation 2nrw remains constant along each stream surface, we have 
ru, = 2 ~ $  and hence, for substitution in the second integral, 

It remains only to substitute (2) and (3) in order to find D‘ explicitly in terms of 
the given physical parameters, and clearly Po will cancel from the result. 

Now, if a cavity at constant pressure were to replace the solid body of figure 6, 
D would obviously be zero according to our basic definition. For the present 
flow model to be precisely applicable, the appropriate solution (2) should there- 
fore make the right-hand side of ( 5 )  vanish. If ( 5 )  happened to give a negative 
value of D’, however, the possibility of steady flow past a cavity could not be 
ruled out immediately. Indeed, precisely this outcome was expected by the 
authors at first, while the problem was still conjectured to depend on the same 
principle as vortex breakdown. A negative value of D’ according to (5) would 
imply that a cylindrical flow downstream had an excess of flow-force above the 
level essential to a steady-state momentum balance with D = 0; but it would be 
plausible that a balance might still be brought about by wave formation, the 
required reduction in flow-force then corresponding to the ‘wave resistance’ of 
a stationary wave-train developed along the cavity (cf. Brooke Benjamin 1962, 

The impossibility of either case conjectured above is demonstrable in the 
following way. Treating the right-hand side of ( 5 )  as outlined below the equation, 
performing the various integrations and using the boundary conditions (4) to 
reduce the integrated terms, one obtains the result 

00 1, 4 4 . t  

This holds for all steady flows of the kind illustrated in figure 6. In  the case of 
a cavity at constant pressure, however, the existence of the stagnation point at  
its forward end implies that the fluid must be at  rest, relative to the stagnation 
point, everywhere on its surface (i.e. p ,  = Po and so u, = O ) . $  With u, = 0 

t The general principIe in view here may be stated as follows: Whenever a hypothetical 
case of streamwise uniform flow, determined by mass and energy conservation, gives a 
flow-force value too large to be physically admissible in a steady state, there may be a 
realizable steady flow which is formed by the superposition of periodic waves on the 
hypothetical one, with perhaps some slight dissipation of energy as an additional require- 
ment. The categorical fact underlying any such possibility is that the property of flow-force 
reduction (i.e. positive wave resistance) is inherent in any natural periodic-wave system 
which becomes steady after developing downstream from its originating agency; thus, for 
infinitesimal waves in particular, this property is concomitant with their group velocity 
being directed downstream. This principle serves to explain several practically interesting 
examples of wavy flow, notably undular hydraulic jumps and mild vortex breakdowns; 
it also applies to the filamentary vapour cavities that are often formed in the tip vortices 
shed from ships’ propellers (Brooke Benjamin, 1962, $4.7).  
1 In  figure 3(a ) ,  plate 1, the ‘ventilated’ cavity seen attached to part of the wire 

spanning the tube shows that the fluid there was moving forward with the main cavity. 
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equation (6) gives D’ > 0 necessarily, thus contradicting the condition D‘ < D = 0 
demanded by the steady-state momentum balance. 

It must be asked whether the foregoing argument establishes conclusively that 
steady flow of the type A defined in § 1 is impossible. The authors believe that it 
does indeed stand as a proof, inasmuch as they presume the truth of the general 
principle explained in the long footnote above-or rather the truth of its con- 
verse that a corresponding parallel flow is always essential to the existence of 
a physically realizable wavy flow. In  certain ways, however, this somewhat 
oblique line of argument is less immediately convincing than an alternative to 
which reference will be made below. To compare the respective advantages of 
the two, and justify our present option, the following questions need to be 
distinguished: (i) For the idealized model of the fluid and cavity system, does 
a mathematical solution of type A exist subject to velocities being finite every- 
where? (ii) Even if the answer to (i) is negative, is it still not possible that a flow 
of type A might be realized in practice when the system is slightly dissipative? 

Although the present argument gives, we believe, a decisive answer to (i), it 
is clearly less satisfactory than one dealing directly with the possibility of a wave- 
shaped cavity and so avoiding dependence on the ‘wave resistance principle’- 
of which no formal proof is yet available for reference. While discussing this 
theoretical problem with us, Mr L. E. Fraenkel pointed out such an alternative 
form of argument, and he has kindly supplied a presentation of it which is given 
in the Appendix to this paper. His analysis confirms rigorously that the answer 
to (i) is negative. 

On the other hand, the special advantage of the present argument is that it 
also answers question (ii). The essential principle applies equally well to slightly 
dissipative systems as to idealized ones, and there are several precedents for 
supposing that it generally provides a more powerful means of determining the 
possible behaviour of a real flow than does an a priori deduction of properties 
according to a frictionless theoretical model.? 

While the analysis so far considered has regrettably little direct bearing on the 
flow observed experimentally, at  least one of the ideas presented seems vital to 
the prospects for a satisfactory theory of the cavity motion. Namely, the 
principle just discussed seems very likely to apply to the quasi-steady flow which 
actually develops in the vicinity of the cavity. Behind the front of the disturb- 
ance propagating ahead of the cavity, the flow appeared in the experiments to 
become steady and cylindrical; moreover, as will be noted later, its probable 
analytical representation is fairly simple. A problem of steady relative motion 
can therefore be posed easily enough, but the equation corresponding to (1) for 
the stream function is awkwardly non-linear in this instance and its solution 

t Consider, for example, the case of slightly supercritical flow in an open channel. 
Assuming conditions of exact energy and flow-force conservation, one may prove that no 
steady disturbance can exist extending indefinitely far downstream; in fact the only 
possible steady disturbance under these conditions is the solitary wave (see Brooke 
Benjamin & Lighthill 1954). But the principle in question indicates, correctly, that 
disturbances in the form of wave-trains are realizable when a small amount of energy is 
dissipated, thus accounting for the ‘undular bores’ which readily arise in practice on 
slightly supercritical streams. 
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presents very formidable difficulties. It would probably be hopeless to attempt 
a solution allowing directly for the possibility of a wave-shaped cavity, and the 
simpler approach based on the aforementioned principle appears much more 
promising. That is to say, one might best proceed on the same lines as the pre- 
ceding discussion, deriving the solution for a hypothetical cylindrical flow far 
downstream and then examining the momentum balance. If, as presumably 
would happen, this flow turned out to have an excess of flow force, the true flow 
could be represented by superposing waves on the cavity. Our photographs of 
the cavity in fact revealed the presence of waves (see figure 3(a),  plate 1) .  

The motion ahead of the cavity 
We next examine the properties of the column of fluid observed in the experi- 
ments to be pushed ahead of the cavity. The development of the Taylor pheno- 
menon with time has been analysed by Stewartson (1952) in the particular case 
of a sphere moved slowly along the axis of rotation; but his theory depends on 
linearization of the equations of motion and so is inadequate for the present 
problem, in which the velocity perturbations in the fluid are not everywhere 
small in comparison with the initial velocity of rotation. At the outskirts of the 
column, however, there must be a region where the perturbations are still small 
enough for a linearized approximation to apply, and on the basis of this fact 
certain properties can be deduced fairly easily. 

For small axisymmetric disturbances from the original state of uniform 
angular velocity Q, the axial velocity u(x, r ,  t )  satisfies 

(cf. Squire 1956, equation (20) for the stream function), and the boundary 
conditions on u are 

aular = 0 at r = 0 and r = R. 

(The reason for (8) is that no circumferential component of vorticity can arise on 
the axis or the wall, where obviously the radial velocity component must also 
be zero.) We shall take the direction of x to be towards the undisturbed fluid 
ahead of the advancing column. 

Solutions of ( 7 )  and (8) representing travelling waves exist in the form 

u = A Jo( k r )  ei(wt-az), (9) 

provided w ,  a and k are related by 

w2(012+ k2) = 4a2a2 (10) 

and kR is a zero of J1. To find the behaviour of the head of the column at large 
times, only the solutions corresponding to the first (positive) zero kR = 3.832 
need be considered since these solutions have the largest phase velocity c = w / a .  
Accordingly (10) gives 

(11) CO a 
(1 + O-0681a2&+ ’ 

0 =- ~ _ _ _  



204 T. Brooke Benjamin and B.  J. X. Burnard 

where co = 2QR/3-832 = 0.522QR. Note that co is the maximum phase velocity 
and maximum group velocity dw/da for this class of travelling waves (cf. Braenkel 
1956, 5 4.3) .  

It must be recognized that the foregoing results also account for a class of 
solutions with real exponential dependence on x and t. Putting a = - im and 
o = - in and taking m and n to be real and positive, we obtain 

u = AJ0(3-S3r /R)  exp { - m(x - ct)}  ( 1 2 )  

with 

This represents the outskirts of a disturbance that maintains its form while 
advancing a t  a velocity greater than co, and the question arises whether our 
column might have such a character. The possibility of a steady wave form can 
be ruled out, however, after consideration of the equivalent problem of steady 
motion on the basis of equation (1). There readily appears to be no solution which, 
in the absence of any obstacle displacing fluid inside the boundary r = R,  has 
the required properties of tending to the undisturbed flow for z + co and tending 
to another flow with finite velocities for x -+ - co. 

On the other hand, the solution (12 )  will apply ahead of an axisymmetric 
obstacle moving faster than c0 or, with obvious modifications, it will apply 
upstream in a corresponding steady flow such as in figure 6 ,  where now U > c0. 
And since real exponentials are the only small-amplitude solutions possible 
under this condition, it follows that a situation such as depicted in figure 6 must 
eventually become steady if UIQR > 0.522; that is to say, an incessant dis- 
persive process is impossible in front of the obstacle since no periodic component 
like ( 9 )  has a large enough group velocity to remain there. Thus we have a 
sufficient condition for non-occurrence of the Taylor phenomenon. [It does not, 
of course, follow that the Taylor phenomenon will necessarily occur if 
UjQR < 0.522; for in this case solutions of the real exponential type are still 
obtainable by assigning kR to the higher zeros of J1.] 

Having established that the motion at  the outskirts of the column is unsteady, 
we may conclude that the appropriate solution of ( 7 )  at large t is expressible in 
the form? 

wheref(x, t )  is a Fourier integral over a spectrum of wave components as in (9), 
with w related to a through ( 1  1 ) .  There is no way of determining the composition 
of the spectrum on the basis of the present linearized theory, but the following 
hypothetical case serves to illustrate the general character of the motion. 

u = AJ0(3-83r/R)f(x, t ) ,  (14) 

We consider the form of f ( x ,  t )  corresponding to the initial values 

x < 0, 
. f(x,O){ = = 0, 2 > 0. 

t As it obviously must, this axial-velocity distribution gives a zero net flow through 
any cross-section, the forward flow near the axis being balanced by a return flow through 
the outer part of the cross-section (in fact through the annulus 0.628R < r < R). 
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This is 

with the path of integration indented under the origin. There is some support for 
this choice of Fourier integral in the fact that, for all t 2 0, it gives f -+ 1 behind 
the wave front, whereas with f = 1 the expression (14) is an asymptotic solution 
of the full non-linear equations of motion under conditions where the x- and 
t-derivatives tend to zero. Thus the solution may accurately describe the motion 
in the cylindrical part of the column observed behind the dispersing front. In 
this part, moreover, an indication of the experiments was that fluid on the axis 
became stationary relative to the cavity, implying that the constant A may 
equal the cavity velocity 0-38QR. In other words, our solution of the linearized 
equations of motion has the incidental property of matching precisely to the flow 
well inside the column, even though in the leading part it  is reliable only at  the 
extremities where f < 1. 

According to (11) the front of the disturbance will eventually be composed 
from waves with group velocities near co, i.e. with a small; and so to find an 
asymptotic approximation to (15) for large t we may take the second approxima- 
tion to (1 1) for a! small, thus 

(16) 

[It is noteworthy that a similar situation is presented by the linearized theory of 
long waves in shallow water (Jeffreys & Jeffreys 1946 , s  17.09).] Introducing 

w = ace( 1 - 0*034a2R2). 

6 = (O*102R2cot)Qa, z = (x-cot)/(0*102R2cot)~, (17) 

d c  m 
we then obtain f F(x )  = L.f exp{ - i ( ~ < + ; c ~ ) ) ~  277% 

= Ai (z)dx,  

where 

is the Airy integral. 
This result represents an advancing wave-form which keeps a constant value 

at x = cot, but whose length scale measured about this point increases with time 
like tg. Towards negative x the function P(z) defined by (18) oscillates with 
steadily decreasing amplitude about its asymptotic value of 1 ; but this feature 
is probably spurious, owing to the failure of the linearized approximation in the 
region where f is not small. Oscillations were not observed at  the head of the 
column in the experiments, although we are unable to say with certainty that 
they were absent, and so it seems possible that the actual wave-form makes a 
smooth transition between the outskirts, where its initial rise may be described 
accurately by (IS),  and the cylindrical flow inside the column. At the outskirts 
an approximation to (18) by steepest descents gives 

Ai (2) = IOm cos (z< + 4-c3) d< 
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which is fairly accurate for z greater than about 1 and which shows how the 
disturbance diminishes smoothly to zero towards positive z .  

While the tentative nature of these results needs to be emphasized, they a t  
least suffice to illustrate the main theoretical conclusion that the front of the 
column advances with the characteristic speed co while gradually dispersing. 
This was borne out reasonably well by the experimental observations. Tracing 
the progress of the point at  which fluid on the axis acquired a velocity half that 
of the cavity, we estimated its speed of propagation as C = 0-48QR. The speeds of 
points further ahead associated with smaller values of u appeared to be somewhat 
greater than this, but they were diEcult to estimate and the present C is suffi- 
ciently close to co for general confidence in the theoretical interpretation. The 
difference of 8 yo might anyway be accountable to an effect of the wires which 
spanned the flow. Some slight indication of the predicted dispersion of the front 
of the column was forthcoming from the diagrams exemplified by figure 4, but 
the data were inadequate for a definite appraisement in this regard. The axial- 
velocity distribution in the column could be estimated from the displacement of 
the dye from its initial position along a diameter, and the observations confirmed 
the theoretical distribution Jo( 3*83r/R). It should be noted, however, that 
figure 3 ( b )  (plate 1)  gives a distorted view of this distribution, owing to the 
curved walls of the tube. 

5. Conclusion 
It may be useful now to summarize the overall picture established by the 

experiment and rationalized at least in part by the preceding theoretical dis- 
cussion. When a tube initially filled with liquid having uniform angular velocity 
is opened wide at  one end, the liquid flows out by centrifugal action and, if the 
rotation is rapid enough for gravity to be unimportant, the flow is approximately 
axisymmetric. Provided the tube is long enough the bubble progressing along i t  
may eventually evolve a fluid motion that does not depend on conditions at  the 
open end: that is, the situation at the forward end of the bubble determines its 
speed and cross-sectional area, and hence the rate of flow of liquid out of the 
tube, so that the conditions at  outlet must adjust to this independently deter- 
mined flow rate. The speed of the bubble was observed to be about 0*38!2R, and 
its cross-sectional radius about 0.5R. 

When the bubble acquires its ultimate steady speed the fluid motion ahead 
does not become steady everywhere, there being a manifestation of the ‘Taylor 
phenomenon ’. The region in which fluid is set in axial motion ahead of the bubble 
continually lengthens, although behind the slowly dispersing front of this region 
the motion does become steady relative to the bubble. From the measurements 
by the dye technique the velocity of the axial point where the flow velocity 
becomes half the bubble velocity was estimated as 0*48QR, which compares well 
with the theoretical propagation velocity co = 0.522QR characteristic of the 
front. 

No evidence of waves in the region ahead of the bubble was noticed, but more 
or less regular undulations on the bubble surface were generally observed in 



Motion of a cavity in a rotating liquid 207 

photographs such as figure 3 (a) ,  plate 1. It seems quite likely that these waves 
were an essential feature of the flow past the bubble, and not merely an effect of 
vibrations in the apparatus. 

The conclusion that the motion of the bubble becomes independent of the 
precise conditions near the open end of the tube seemed fairly well supported 
by the observations, and it appears quite reasonable on intuitive physical 
grounds; but obviously certain reservations must be made in this regard. When 
the flow out of the tube is obstructed in some way, say by an annular weir 
extending around the circumference of the tube, the present contention is that 
the disturbance created will not, if it is reasonably small, affect the rate of dis- 
charge which is determined by events far down the tube. But clearly the flow 
can be throttled by any sufficiently large obstruction at the end. The influence 
of end conditions on flows of the present type might be worth further investi- 
gation. 

We are greatly indebted to Mr L. E. Fraenkel and Professor K. Stewartson for 
constructive comments on the original draft of this paper. 

APPENDIX 

The non-existence of a suitable solution for inviscid flow of type A 

BY L. E. FRAENKEL 

Imperial College, London 

A theoretical argument in 5 4 strongly suggests, but does not quite prove, that 
the flow investigated could not be of ‘type A’ (i.e. steady in a reference frame 
moving with the cavity and undisturbed far ahead of it). In  the course of a 
recent correspondence with Dr Brooke Benjamin I noticed that the non- 
existence of such a solution can be proved without any detailed assumption 
about the nature of the boundary and the flow far downstream (which might be 
wave-like). Accordingly the authors have invited me to present this proof here. 
Its relation to their argument is discussed in 0 4. 

Let the boundary of the cavity (figure 6 )  be denoted by r = hfx), x 2 0. We 
do not assume that its slope, dhldx, and the radial velocity vanish far downstream. 
We seek UjQR,  h and a stream function = 8 Ur2 + x(x, r )  satisfying the differ- 
ential equation (1) and the following conditions: 

(i) There is no disturbance far upstream; thus 

x,xz,xr+O as x+--co. (A 1)  

(A 2) 

(ii) By conservation of mass 

x(x ,  R) = 0, x(x, A )  = - -!jUh2. 

(iii) The velocity is bounded everywhere in the fluid domain. (There is no 
possibility of isolated singularities for a cavity flow.) 
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(iv) There is a stagnation point at  the nose of the cavity. Since on r = h the 
pressure is constant and the circulation 2nwr zero, and since the stagnation 
pressure P($) is constant on any stream surface, we have 

1 1 
r r 

on r = A(x), p = P(0) Po, u U+-xr = 0, w E --xx = 0. (A 3) 

(v) The radius of the cavity is non-vanishing behind the nose; say 

h(x)  2 A, > 0 for x 2 xo > 0. (A 4) 
(This could be replaced by a weaker, but more complicated, condition.) 

differential equation for x is 
We proceed to show that no solution with these properties exists. The 

Let C be a closed curve in the (x ,  r)-plane ( r  2 0), bounding a region S of the fluid 
domain. Then by Stokes’s theorem 

which is a mathematical statement of the momentum principle considered in 5 4 
Also, integration by parts and (A 5 )  yield for a path x = const., 

Assume that the solution for the cavity exists. Choose C to consist of arcs 
along the cavity boundary (0 < x < x2, r = A),  along a radial line downstream 
(z = x2 > 0, h < r R), along the pipe wall (xl 6 x < x,, r = R), along a radial 
line upstream ( x  = x1 < 0, 0 < r < R), and along the axis (xl < x < 0, r = 0). 
Let x1 -+ - 00. Only the first two arcs contribute to the line integral in (A 6 ) ;  
hence inserting the boundary conditions for the cavity, and using (A 7) for the 
contribution from x = x,, we obtain 

If the flow downstream is assumed to be parallel (xx-+O for X + C Q ) ,  the last 
integral vanishes, leaving the contradiction established in $4. But in any case, 
since xx = 0 on r = A, we have (replacing x2 by x) 

whence 

By (A 4) the right-hand side -+ co as x -+ CQ; so therefore does the left-hand side. 
That is, velocities are unbounded sufficiently far downstream. But this contra- 
dicts the condition (iii). 
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